Data Science
Tahun 2012 yang lalu, Harvard Business Review menyebut profesi data scientist sebagai profesi terseksi abad 21. Bagaimana tidak? Seorang data scientist memiliki kemampuan mengolah data dengan volume yang sangat besar dalam sehari. Ia juga dituntut untuk mempunyai tingkat kreativitas yang tinggi untuk mengomunikasikan hasil olahan data. Kemampuan ini sangatlah jarang ditemukan. Inilah yang membuat profesi ini terlihat keren, dan konon memberi pundi-pundi penghasilan yang tidak sedikit.
Seorang data scientist dituntut untuk menguasai sejumlah disiplin ilmu: ilmu statistik untuk mengolah data, pemrograman sebagai pendukung pengolahan data dalam jumlah besar, ekonomi (atau bidang ilmu lain tergantung pada bidang perusahaan atau organisasi) dalam menganalisis dan mendapatkan insight dari hasil olahan data, serta kemampuan untuk menceritakan (story telling) data yang telah dianalisis.
Big Data
Big Data adalah istilah yang menggambarkan volume data yang besar, baik data yang terstruktur maupun data yang tidak terstruktur. Big Data telah digunakan dalam banyak bisnis. Tidak hanya besar data yang menjadi poin utama tetapi apa yang harus dilakukan organisasi dengan data tersebut. Big Data dapat dianalisis untuk wawasan yang mengarah pada pengambilan keputusan dan strategi bisnis yang lebih baik.
Konsep Big Data
Volume Organisasi mengumpulkan data dari berbagai sumber, termasuk transaksi bisnis, media sosial dan informasi dari sensor atau mesin. Di masa lalu, aktivitas semacam ini menjadi masalah, namun dengan adanya teknologi baru (seperti Hadoop) bisa meredakan masalah ini.
Kecepatan Aliran data harus ditangani dengan secara cepat dan tepat bisa melalui hardware maupun software. Teknologi hardware seperti tag RFID, sensor pintar lainnya juga dibutuhkan untuk menangani data yang real-time.
Variasi Data yang dikumpulkan mempunyai format yang berbeda-beda. Mulai dari yang terstruktur, data numerik dalam database tradisional, data dokumen terstruktur teks, email, video, audio, transaksi keuangan dan lain-lain.
Variabilitas Selain kecepatan pengumpulan data yang meningkat dan variasi data yang semakin beraneka ragam, arus data kadang tidak konsisten dalam periode tertentu. Salah satu contohnya adalah hal yang sedang tren di media sosial. Periodenya bisa harian, musiman, dipicu peristiwa dadakan dan lain-lain. Beban puncak data dapat menantang untuk analis Big Data, bahkan dengan data yang tidak terstruktur.
Kompleksitas Hari ini, data berasal dari berbagai sumber sehingga cukup sulit untuk menghubungkan, mencocokan, membersihkan dan mengubah data di seluruh sistem. Namun, Big Data sangat dibutuhkan untuk memiliki korelasi antar data, hierarki dan beberapa keterkaitan data lainnya atau data yang acak.
Data Analytics
Ilmu untuk mengolah data mentah yang bertujuan untuk mencari pola dan mendapatkan simpulan tentang informasi dengan menambahkan algoritma atau proses mekanis untuk memperoleh pengetahuan
Ilmu yang diperlukan untuk Data Analytics:
- Programming Skill
- Statistical skill dan Matematic
- Machine Learning Skill
- Data Wrangling Skill
- Communication and Visualization Skill
Perbedaannya
Sumber
https://www.simplilearn.com/data-science-vs-big-data-vs-data-analytics-article
https://id.techinasia.com/talk/profesi-data-scientist-menjanjikan
https://www.codepolitan.com/mengenal-big-data
Komentar
Posting Komentar